Exercise 2

Use residues to establish the following integration formula:

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}=\sqrt{2} \pi
$$

Solution

Before we get started with solving this integral, we want the limits of integration to be from 0 to 2π, so let $x=\theta+\pi$. Then $d x=d \theta$ and

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta} & =\int_{0}^{2 \pi} \frac{d x}{1+\sin ^{2}(x-\pi)} \\
& =\int_{0}^{2 \pi} \frac{d x}{1+(-1)^{2} \sin ^{2} x} \\
& =\int_{0}^{2 \pi} \frac{d x}{1+\sin ^{2} x}
\end{aligned}
$$

Because the integral now goes from 0 to 2π and the integrand is in terms of $\sin x$, we can make the substitution, $z=e^{i x}$. Euler's formula states that $e^{i x}=\cos x+i \sin x$, so we can write $\sin x$ and $d x$ in terms of z and $d z$, respectively.

$$
\sin x=\frac{z-z^{-1}}{2 i} \quad \text { and } \quad d x=\frac{d z}{i z} .
$$

The integral becomes

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d x}{1+\sin ^{2} x} & =\int_{C} \frac{1}{1+\left(\frac{z-z^{-1}}{2 i}\right)^{2}} \frac{d z}{i z} \\
& =\int_{C} \frac{1}{\frac{3}{2}-\frac{1}{4 z^{2}}-\frac{z^{2}}{4}} \frac{-4 i z d z}{4 z^{2}} \\
& =\int_{C} \frac{4 i z d z}{z^{4}-6 z^{2}+1} \\
& =\int_{C} \frac{4 i z d z}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
& =\int_{C} f(z) d z
\end{aligned}
$$

where the contour C is the positively oriented unit circle centered at the origin and z_{1}, z_{2}, z_{3}, and z_{4} are the zeros of $z^{4}-6 z^{2}+1$.

Figure 1: This figure illustrates the unit circle in the complex plane, where $z=x+i y$.
According to Cauchy's residue theorem, this contour integral is $2 \pi i$ times the sum of the residues of $f(z)$ at the singular points inside the contour.

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}}^{\operatorname{Res}} f(z)
$$

$f(z)$ has four singular points, $z_{1}=1+\sqrt{2} \approx 2.414, z_{2}=1-\sqrt{2} \approx-0.414, z_{3}=-1+\sqrt{2} \approx 0.414$, and $z_{4}=-1-\sqrt{2} \approx-2.414$. Since z_{1} and z_{4} lie outside the unit circle, they make no contribution to the integral. However, z_{2} and z_{3} do lie inside the circle, so we have to evaluate the residues of $f(z)$ at these points. Because z_{2} and z_{3} are simple poles, the residues can be written as

$$
\begin{aligned}
& \underset{z=z_{2}}{\operatorname{Res}_{z=z_{3}}} f(z)=\phi_{1}\left(z_{2}\right) \\
& \left.\operatorname{Res}_{2}(z)=z_{3}\right),
\end{aligned}
$$

where $\phi_{1}(z)$ and $\phi_{2}(z)$ are determined from $f(z)$.

$$
\begin{aligned}
& f(z)=\frac{\phi_{1}(z)}{z-z_{2}} \quad \rightarrow \quad \phi_{1}(z)=\frac{4 i z}{\left(z-z_{1}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
& f(z)=\frac{\phi_{2}(z)}{z-z_{3}} \quad \rightarrow \quad \phi_{2}(z)=\frac{4 i z}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{4}\right)}
\end{aligned}
$$

So

$$
\begin{aligned}
& \operatorname{Res}_{z=z_{2}} f(z)=\phi_{1}\left(z_{2}\right)=\frac{4 i z_{2}}{\left(z_{2}-z_{1}\right)\left(z_{2}-z_{3}\right)\left(z_{2}-z_{4}\right)}=\frac{1}{2 i \sqrt{2}} \\
& \operatorname{Res}_{z=z_{3}} f(z)=\phi_{2}\left(z_{3}\right)=\frac{4 i z_{3}}{\left(z_{3}-z_{1}\right)\left(z_{3}-z_{2}\right)\left(z_{3}-z_{4}\right)}=\frac{1}{2 i \sqrt{2}} .
\end{aligned}
$$

This means that

$$
\int_{C} f(z) d z=2 \pi i\left(\frac{1}{2 i \sqrt{2}}+\frac{1}{2 i \sqrt{2}}\right)=\sqrt{2} \pi .
$$

Therefore,

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}=\sqrt{2} \pi
$$

